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Abstract

We consider the problem of jointly optimizing the daily production planning and energy supply man-
agement of an industrial complex, with manufacturing processes, renewable energies and energy storage
system. It is naturally formulated as a mixed-integer multistage stochastic problem. This problem is
challenging for three main reasons: there is a large number of time steps (typically 24), renewable en-
ergies are uncertain and uncontrollable, and we need binary variables modeling hard constraints. We
discuss various solution strategies, in particular Model Predictive Control, Dynamic Programming, and
heuristics based on the Stochastic Dual Dynamic Programming algorithm. We compare these strategies
on two variants of the problem: with or without day-ahead energy purchases.

1 Introduction1

The latest Intergovernmental Panel on Climate Change (IPCC) warns us yet again on the consequences of2

climate change, and incites governments, industries and citizens to change accordingly. The COP26, held on3

November 2021, set up a clear objective of securing global net-zero emissions by mid-century. Therefore the4

industry, counting for one fifth of global emissions (5th IPCC report), must take strong actions to reduce5

them. In this respect, the Clean Energy Ministerial Industrial Deep Decarbonisation Initiative (IDDI) calls6

out for a change in the energy supply, as industry consumes fuel massively to produce local energy, especially7

steel and cement production. To put things in perspective, renewable generation represent only 11.2% of8

electricity generation in the industrial sector in 2020, which is far less than its share in global electricity9

generation, up to 28% in 2020, according to the International Energy Agency (IEA), see their Tracking10

Industry 2021 report [Intb] and their Global Energy Review 2021 report [Inta]. For instance, micro-grids are11

an alternative energy supply model. They are defined (see e.g., [HPG18]) as a small-scale power grid that12

can operate independently or collaboratively with the power grid. Generally, they are compounds of Energy13

Storage Systems (ESS) and renewable energy generation units (wind turbines, solar panels).14

However, incorporating renewable energies in the supply mix is challenging as they are intermittent, un-15

predictable and uncontrollable. To counteract these defects it is often suggested to add an ESS (we refer16

to [Geo+21] for an overview of the available ESS). Indeed, an ESS allows transferring energy across time-17

steps, making it controllable and compensating intermittency. Unpredictability of the renewable production18
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requires to go from a deterministic formulation to a stochastic formulation. Indeed, a classical determin-19

istic problem is often misleading and optimistic about the potential of the ESS. Unfortunately, multistage20

stochastic problem are known to be numerically challenging (see e.g., [Sha06]). Starting from a standard21

scheduling industrial problem, we consider using an onsite micro-grid to provide an alternative energy supply22

to the main grid. We obtain a mixed-integer multistage stochastic problem optimizing jointly the production23

planning and the energy supply management of an industrial facility with in advance and intraday energy24

purchases.25

1.1 The industrial microgrid management problem26

We consider a facility with I machines that manufactures up to J types of products that can be stored (see27

fig. 1a). Our goal is to provide the facility with a joint production and energy supply planning, on a discrete28

horizon t ∈ [T ]. The planning should minimize the total expected cost (economic, environmental and labour)29

while satisfying production target and technical constraints.30

Depending on the facility at hand, many technical constraints need to be satisfied. We can classify them in31

three types. First, physical constraints are induced by the machines at hand. For example most machines, as32

grinders or plastic extruders, require warming up before being operational. Another straightforward example33

comes from the food industry, where machines need to be cleaned up to reconfigure the production line.34

Second, process constraints which correspond to precedence constraints mandating sequential execution of35

some tasks (usually called flow-shop problems). For instance, in a chocolate factory, every batch production36

will follow in order cleaning, roasting, shell removing, grinding and conching. Finally, implied constraint37

model decision-maker preferences or human resources constraints. For example, the decision maker may38

limit the number of re-starts to limit wear-off, if a machine is hard to access or for human power reasons.39

In this paper we consider a problem with bounded production and set-up costs. In addition, we consider40

shared resources constraints such that some products cannot be produced simultaneously. Factory energy41

needs, proportional to production, are met with electricity from a main grid or produced onsite by a micro-grid42

consisting in solar panels coupled with an energy system storage (ESS) see fig. 1b.43
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Figure 1: Industrial Management Problem

Electricity from the main grid can be purchased through two different contracts, usually cumulated: Intra-44

day contract where prices are fixed annually, the factory pays the energy extracted from the main grid at45

a given time t; In-advance contract where the factory buys energy blocks in advance (e.g., a day ahead of46
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production) at a preferential rate. Decisions are made adjusting energy purchases based on intra-day rates47

in real time.48

1.2 Literature review49

We consider a problem coupling production planning and energy supply management. Taken separately,50

each problem has been widely studied, but considering them simultaneously is less common, especially when51

taking into account uncertainty, leading to large multistage stochastic optimization problem. In this section,52

we review the state-of-the-art of energy-aware production planning under uncertainties.53

1.2.1 Production planning and Scheduling problems under uncertainties54

A typical angle for energy-aware production systems is to minimize energy waste, see the reviews [Bän+21],55

[BG16] and references therein. This part of the literature looks for production plan, or scheduling, that are56

more energy efficient, adapting tools from well studied problems like single or parallel machine scheduling,57

job-shop, flow-shop or lot-sizing. 1 However, few papers discuss the economic impact of integrating renewable58

energy sources onsite: indeed, the industrial energy supply is traditionally guaranteed by an external grid.59

In their survey [Bän+21], Bänsch et al. count 8 articles (out of 192) that consider an onsite energy genera-60

tion and an ESS. The literature lacks research on industrial problems with distributed generation systems,61

though, they are widely studied on their own. We refer to the review [Alo+22] where Alonso-Travesset et al.62

focus on recent studies on models under uncertainties in distributed generation systems. They highlight the63

necessity of properly taking into account uncertainties in those problems, in particular regarding renewable64

energy generation. There are two main ways of handling uncertainty: stochastic optimization and robust65

optimization.66

In the first paradigm, we model uncertain variables as random variables with known distribution, usually67

represented by a scenario tree. Further, as uncertainties are revealed step by step, stochastic problems are68

often multistage problems which are known to be challenging, while there exists various methods to tackle69

2−stage problems e.g., based on Bender’s decomposition (see [BL97]). As a result, multistage problems are70

classically relaxed into 2−stage problems: all decision variables, except the first stages variable, are assumed71

to be taken with the full knowledge of the uncertainty. This is the strategy adopted by Golari, Fan, and Jin72

in [GFJ16] to optimize the production planning of interconnected factories each connected to a micro-grid.73

Biel et al. take this approach as well in [Bie+18] to solve a flow-shop problem under uncertainties regarding74

wind energy generation. In another article ([WMG20]), Wang, Mason, and Gangammanavar study a similar75

problem with multi-objectives (total completion time and energy costs), where selling an energy excess to76

the main grid is allowed. They propose an epsilon-constraint algorithm integrated with the L-shaped method77

([Bir85]), which is a Benders decomposition adapted to 2−stage stochastic programs.78

In the second paradigm, robust optimization, we consider the worst case in possible uncertainty realizations.79

This is the choice made by Ruiz Duarte, Fan, and Jin in [RFJ20], where they evaluate the renewable energy80

integration with an ESS in a factory while optimizing the production planning. This is modeled by a 2−stage81

problem: in the first stage, a production plan is defined whereas in the second stage the decisions regarding82

the energy management system are made to minimize its energy costs under the worst-case energy generation83

scenario. The robust uncertainty set is determined by statistical tools. Bridging both worlds, Shahandeh,84

Motamed Nasab, and Li propose in [SML19] to divide random variables into two categories: static and85

1The job-shop problem, see e.g., [Man60], looks for an optimal scheduling plan for n jobs, consisting of operations with
precedence constraints, on m machines. The flow-shop problem is a variant of the job-shop problem with a strict order of all
operations on all jobs. Finally, a lot-sizing problem optimizes the production quantities of each item at each time step.
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dynamic variables. The idea is to apply robust optimization on one variable category and then stochastic86

optimization on the other, considering a scenario tree. This results into two hybrid algorithms, mixing robust87

and stochastic optimization to solve a multistage problem with different uncertainty types.88

Furthermore, in these industrial problems, the solution is not only affected by renewable energies’ variabil-89

ity: costs and demands are other known uncertainty sources. If some articles consider time-of-use (TOU)90

electricity rates ([Bie+18], [MP13], [Li+17] and [WMG20]), which are fixed prices in contract depending91

on consumption’s times, others consider variable prices. In that respect, Bohlayer et al. ([Boh+20]) and92

Ierapetritou et al. ([Ier+02]) both study mixed-integer multistage stochastic problems under energy prices93

uncertainty. See also Fazli Khalaf and Wang ([FW18]) who solve a 2−stage stochastic scheduling problem94

considering both electricity prices and energy generation as random variables. Finally, in lot-sizing problems,95

the product demand is often random: Higle and Kempf consider a multistage stochastic program in [HK10]96

to solve a production planning problem under demand uncertainty, trying to avoid cumulating stocks.97

1.2.2 Strategical decision problems for Microgrid98

We have covered stochastic considerations for operational or tactical production planning problems. We now99

discuss strategical decisions like investing in renewable energies and ESS, with question of size, technologies100

and number of ESS and energy generation units. To adapt their energy mix, factories need to design101

what distributed generation system is suited for their production. In [FMH21], Fattahi, Mosadegh, and102

Hasani focus on the planning in mining supply chains with renewable energy investment: at each stage,103

warehouse or generation systems can be installed. They propose a multistage stochastic minimization model104

yielding strategic decisions, costs include energy consumption and production costs, holding inventory and105

transport costs as well as investment costs. Furthermore, they suggest a methodology evaluating the social106

and environmental impact both of transportation and system life-cycle.107

The growing interest in microgrids is driven by environmental concerns. Thus, instead of minimizing energy108

waste, a more direct approach consists in integrating environmental objectives into costs. For example Li109

et al., in [Li+17], assess wind and solar generation deployment costs in order to achieve net-zero carbon.110

They also investigate a renewable generation energy system’s resilience: can it answer the energy demand111

despite its inherent uncertainty? They answer this question through a multistage stochastic micro-grid sizing112

problem, with given energy demand. The flexible demand aspect is taken into account by Pham et al., who113

extend Golari, Fan, and Jin’s work in [Pha+19], considering both stochastic demand and the micro-grid114

sizing. Their goal is to determine if it is economically viable to provide the system with only renewable115

energies: the objective is to minimize energy bought from the main-grid, not factory costs.116

Investing in micro-grids doesn’t require only sizing but also investigating the different existing technologies117

and their characteristics. In [Tsi+21], Tsianikas et al. ask the following questions: is it necessary to extend118

the factory’s storage capacity? If yes, when and what storage quantity should they install? What type of119

storage technology should they choose? Answering those questions allows determining an optimal investment120

strategy, and is key to optimizing interconnected micro-grids in the long run. An interesting take on the121

subject is given in [HBF15]: when most micro-grid investment model consider the ESS sizing at the beginning,122

Hajipour, Bozorg, and Fotuhi-Firuzabad propose to extend the storage capacity and invest in renewable123

generation units at different times, leading to a multistage stochastic problem. This model allows life-cycle124

constraints or decreasing technology efficiency to have an impact on results.125
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1.3 Contributions126

Our contribution in this paper lies in four aspects. First, we propose an optimization model for a coupled127

management problem with both production and energy supply planning. We take into account the multistage128

structure of the problem, the uncertainties due to onsite renewable energy generation and binary variables129

modeling physical production constraints. In particular, we model shared resources constraints: a choice has130

to be made between different products at each time. Therefore, it is crucial, when reducing the problem to131

stage t with dynamic programming, to have visibility on the consequences of choosing a product at t. Second,132

we consider both on-demand supply with TOU pricing and in-advance energy purchasing. The latest brings133

complexity to the multistage problem with first stage variables impacting the whole horizon costs. Third,134

we discuss multiple solution strategies based on well known and new methodology: a deterministic approach135

know as Model Predictive Control (MPC); Stochastic Dynamic Programming (SDP); and an approach solving136

linear multistage stochastic problems, Stochastic Dual Dynamic Programming (SDDP). Finally, as there137

does not exist an efficient algorithm to solve large mixed-integer multistage stochastic problems, we propose138

heuristic methods relying on the approximated cost-to-go function given by SDDP. We highlight theoretical139

and practical limits of these solution strategies on numerical examples.140

The remainder of the paper is laid out as follows. Section 2 introduces the problem formulation and define141

two quantities assessing the sensitivity of the problem to stochasticity. We present in section 3 dynamic142

programming methods to solve multistage mixed-integer stochastic problems. Those methods being unsatis-143

factory for the problem at hand, we then proceed to detail different heuristics in section 4. Finally, section 5144

presents numerical results.145

1.4 Notations146

To facilitate understanding, we go through some notation used in this paper. We denote [a : b] := {a, . . . , b}147

the set of integers between a and b, and [T ] := [1 : T ] the set of non-null integers smaller than T . Accordingly,148

X[n] denote the collection X[n] := {Xi}i∈[n]. Generally speaking, we denote the state variables x, the control149

variables u and the noise ξ. All random variables are in bold characters, further if ξ is a random variable150

then ξ denotes a realization of this variable. Finally, σ(ξ[t]) represents the σ−algebra generated by {ξτ}τ∈[t].151

2 Multistage stochastic problems152

In the considered problem we can often distinguish between strategical and operational decisions. The strate-153

gical decision (like sizing of elements, or in-advance purchasing of electricity) are then seen as fixed parameter154

for the operational management problem. Here, in section 2.1 we describe the operational management prob-155

lem with given strategical decision θ, while section 2.2 presents the global problem considering both the156

strategical decision costs as well as the operational costs. Finally, in section 2.3 we discuss the so-called157

anticipative framework for multistage program and the Value of Stochastic Solution (VSS) and Expected158

Value of Perfect Information (EVPI) indicators which assess the sensitivity of the problem to uncertainties.159

2.1 Parametrized multistage problem160

We consider a controlled dynamic system, that is a sequence of random vector x[T ] that follows a dynamic161

(see eq. (1b)), affected by a sequence of noises ξ[T ]. Each noise ξt takes value in a finite set Ξt, and we denote162

Ω :=
∏
t∈[T ] Ξt. We assume that these noises represent all the uncertainty in the problem at hand, with163

known probability distribution, resulting in a probability space (Ω,A,P). We call scenario a sequence ξ[T ] of164
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realization of the noise at each time step. Although there exists a finite number of scenarios S = |Ω|, it can165

be very large. For example, if we consider a problem with hourly time steps, each noise taking 10 different166

values i.e., |Ξt| = 10, then S = 1024.167

With this definition, for a given parameter θ (representing here battery size or day-ahead purchase. . . ), we168

consider the following parametrized multistage stochastic problem:169

(Pθ) V (x0; θ) := min
(ut,xt)t∈[T ]

E
[ T∑
t=1

Lθt (xt−1,ut, ξt)

]
(1a)

s.t. xt = Dθ
t (xt−1,ut, ξt) ∀t ∈ [T ], (1b)

xt ∈ Xθ
t ∀t ∈ [T ], (1c)

ut ∈ Uθt (xt−1, ξt) ⊂ Uθt ∀t ∈ [T ], (1d)

σ(ut) ⊂ σ(ξ1, . . . , ξt) ∀t ∈ [T ], (1e)

where xt is a vector of continuous state variables; ut represent mixed-integer control variables, binary vari-170

ables are necessary to model physical constraints such as sharing resources constraints; and ξt are exogeneous171

finitely supported random variables. We take the classical risk neutral approach where we aim at minimizing172

expected costs in eq. (1a) given as a sum of instantaneous costs given by function Lθt : Xθ
t−1 × Uθt × Ξt → R173

depending on current state xt−1, control ut and noise ξt. Further, eq. (1b) describes the dynamic of the174

controlled system, that is how the next state xt is obtained from current state xt−1, control ut and noise ξt175

through Dθ
t : Xθ

t−1×Uθt ×Ξt → Xθ
t . Equation (1c) represent constraints on the state variable xt, and eq. (1d)176

constrains the admissible control variables. Note that we can only enforce constraints linking variables at t177

and t+ 1. Finally, the last constraint (eq. (1e)), commonly known as non-anticipativity constraint, represent178

the information available when taking decision ut. In particular, in this framework, we observe the random179

variable ξt realization, before making decision ut, with no knowledge of future random realizations from t+1180

to T.181

Technically, solutions of eq. (1) are random variables of (Ω,A,P), meaning they are functions of the scenario182

ξ[T ], i.e., there exists functions ψθ[T ], such that, for all t ∈ [T ], ut = ψθt (ξ[T ]) and consequently, resulting183

recursively from the dynamic Dθ
t , there exist a function Ψt such that xt = Ψθ

t (ξ[T ]). We call noise-based184

policy a sequence of such functions ψθt∈[T ], with, for each t ∈ [T ], function ψθt :
∏T
τ=1 Ξτ → Uθt returning185

a control ut for any scenario ξ[T ]. Therefore, given a scenario ξ[T ] and initial state x0, a noise-based policy186

computes a trajectory, which is the resulting sequence of state and control variables (u[T ], x[T ]) depending on187

the scenario, whose cost is given by eq. (2a). Then, averaging over all scenarios, we compute the noise-based188

policy expected cost V ψ(x0; θ) in eq. (2b).189

V̂ ψ(x0, ξ[T ]; θ) :=

T∑
t=1

Lθt (xt−1, ψt(ξ[T ]), ξt) (2a)

where xt = Dθ
t (xt−1, ψt(ξ[T ]), ξt), ∀t ∈ [T ].

V ψ(x0; θ) := Eξ
[
V̂ ψ(x0, ξ[T ]; θ)

]
. (2b)
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190

We say that a noise-based policy ψ is non-anticipative if eq. (1e) is satisfied. Further, a non-anticipative191

noise-based policy is admissible if eqs. (1c) and (1d) are satisfied. The non-anticipativity constraint ensures192

that random variable ut is measurable with respect to the σ-algebra generated by ξ[t]. In other words, it193

ensures that ψt only depends on the first t elements of ξ[T ], more precisely, with a slight abuse of notation:194

ψt(ξ[t]) := ψt(ξ[t], ξ
′
t+1, . . . , ξ

′
T ) = ψt(ξ[t], ξ

′′
t+1, . . . , ξ

′′
T ), ∀ξ′,∀ξ′′,∀t.

Remark 1 (Scenario trees point of view). A classical approach in stochastic programming consists in rep-195

resenting the probability space through a scenario tree T , such that the extensive formulation of (Pθ) has as196

many variables as nodes in T . More precisely, a node ν ∈ T , of depth t, represent the realization of all noises197

up to time t, ξ[t]. Then a node ν corresponding to noise realization ξ[t] has |Ξt+1| children. In this setting, a198

random process (ut,xt)t∈[T ] is non anticipative (satisfying (1e)), if and only if, for all t ∈ [t], (ut,xt) is a199

function of the nodes of depth t in T .200

Remark 2 (Relatively complete recourse assumptions). Ensuring admissibility in a multistage framework201

can be difficult, as constraints in future stages can induce constraint in the current stage. To characterize202

these dependencies, we introduce the complete and relatively complete recourse assumptions. We say that203

Problem (1) has complete recourse if all control are admissible, more precisely if every sequence of control204

ut ∈ Uθt results in an admissible trajectory. This is a strong assumption, usually obtained by penalizing205

most constraints. A less stringent requirement, is the relatively complete recourse which guarantees that206

there always exists an admissible control. Relatively complete recourse ensures that we can, from any state207

xt ∈ Xθ
t , and for any scenario, construct an admissible trajectory with a non-anticipative policy.208

Remark 3 (Estimating noise-based policy cost through Monte Carlo). Bear in mind that, for multistage209

problem with horizon T larger than a few unit, exactly computing the expected cost to a given noise-based policy210

might not be numerically tractable. For example, consider that each noise ξt can take 10 different values,211

then computing V ψ(x0, θ) requires O(10T ) operations. However, if exact computation is not reachable, it can212

always be estimated through standard Monte-Carlo simulations.213

This approach consists in drawing a number N of independent scenarios
{
ξn[T ]

}
n∈[N ]

, where typically N ≥214

1000. We then evaluate the cost of the noise-based policy along each of the N scenario, V̂ ψ(x0, ξ
n
[T ]; θ), and215

estimate the expected cost V ψ(x0; θ) as216

V ψ(x0; θ) ≈ 1

N

N∑
n=1

V̂ ψ(x0, ξ
n
[T ]; θ). (3)

Under weak assumptions, the Central Limit Theorem (CLT) (see e.g., Section 27 [Bro83]) give some control217

over the error made by this estimation. For the remain of the paper it is enough to keep in mind that, roughly218

speaking, for N large, the difference between the true expected cost and its estimation is smaller than 2σ/
√
N219

with probability at least 95%, where σ is the standard deviation of
{
V̂ ψ(x0, ξ

n
[T ]; θ)

}
n∈[N ]

.220

2.2 The strategic design problem221

We now consider the strategic problem aiming at deciding the best parameter θ ∈ Θ, taking into account the222

strategic decision cost I(θ), and the expected operational management cost V θ1 (x0). We model it as follows:223
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(P) : min
θ∈Θ

I(θ) + V1(x0; θ) (4)

One could ask if the strategic Problem (4) can simply be seen as an operational Problem (1), with an224

additional first stage t = 0 with decision u0 = θ. Unfortunately, it is not as straightforward as it seems: in225

eq. (1d) the constraints on the control ut only depend on the current state xt (and noise ξt), and cannot226

depend on past control u0. The solution consists in considering an extended state (xt, θ), where the second227

part is decided at stage t = 0 and then carried on from stage to stage by the dynamics of the system. With228

this additional time-step, and extended state, we indeed fall back to the classical setting of eq. (1). However,229

the Dynamic Programming based methods presented in section 3 do not scale well with the dimension of the230

state. Thus, considering an extended state (xt, θ) is not a numerically efficient solution if θ is multidimensional231

(for example if θ is a day-ahead electricity plan).232

We end the section with some tools to evaluate policies for either the strategic or operational problem.233

2.3 Deterministic tools to study multistage problem234

To characterize the impact of uncertainty on a stochastic problem, we present two indicators: the Expected235

Value of Perfect Information (EVPI) and the Value of Stochastic Solution (VSS).236

A natural lower-bound for stochastic problems comes from relaxing the non-anticipativity constraint (1e).237

We are then in the anticipative, or perfect information, framework which consists in assuming that we can238

look into the future and know the noises realization (e.g., how much renewable energy is available at any239

given time). More precisely, the anticipative noise-based policy ψant returns, for each scenario ξ[T ] a solution240

perfectly adpated to this scenario, that is an optimal solution to the deterministic problem:241

V̂ ψant(x0, ξ[T ]; θ) := min
(ut,xt)t∈[T ]

T∑
t=1

Lθt (xt−1, ut, ξt) (5a)

s.t. xt = Dθ
t (xt−1, ut, ξt) ∀t ∈ [T ], (5b)

xt ∈ Xθ
t ∀t ∈ [T ], (5c)

ut ∈ Uθt (xt−1, ξt) ⊂ Uθt ∀t ∈ [T ]. (5d)

242

Note that, obviously, this noise-based policy is usually not admissible for Problem (1) as it requires unavailable243

information. However, by definition, the value:244

V ψant(x0; θ) := E
[
V̂ ψant(x0, ξ[T ]; θ)

]
, (6)

is a lower bound of the cost incurred by any admissible noise-based policy on this scenario. The expected245

value of perfect information (EVPI) is defined as:246

EV PI = V (x0; θ)− V ψant(x0; θ), (7a)
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which characterizes what we could gain if we had perfect prediction. Note that EVPI is given as an expectation247

over all scenarios, which is usually untractable, but can be estimated by Monte-Carlo (see remark 3) by solving248

a reasonable number of deterministic programs.249

We have obtained a lower bound by relaxing the information constraint, we now go the other way by consid-250

ering a noise-based policy which does not adapt to new information. More precisely, we solve a deterministic251

problem where noises are replaced by their expected value, yielding a deterministic sequence of control252

(uEVt )t∈[T ].253

The expected value noise-based policy ψEV is such that for every scenario ξ[T ], and all t ∈ [T ], ψEVt (ξ[T ]) =254

uEVt . Beware that, unless we are in a complete recourse framework, the EV noise-based policy is often255

non-admissible, leading to infinite cost. For example, for an industrial microgrid without external grid, if256

the control uEVt is a production plan at t requiring solar energy E[ξt], then this production plan is not valid257

on any scenario ξ[T ] such that ξt < E[ξt]. Generally speaking, the expected cost of the EV noise-based258

policy V ψEV (x0; θ) = E
[
V̂ ψEV (x0, ξ[T ]; θ)

]
is an upper bound of the problem (Pθ)’s value V (x0; θ). Again,259

V ψEV (x0; θ) is defined as a sum over all scenarios in Ω but can be estimated by Monte Carlo (see remark 3).260

Finally, we introduce the value of the stochastic solution (VSS), see [Bir82], as the difference between the261

EV noise-based policy expected cost and the optimal expected cost:262

V SS = V ψEV (x0; θ)− V (x0; θ) ≥ 0. (7b)

3 Dynamic Programming approaches263

Assuming that the noises are finitely supported, a multistage stochastic problem like Problem1 can always be264

cast as large scale deterministic problem (see e.g., [BL97]). The Stochastic Programming literature then offer265

dedicated algorithm exploiting the special structure of such problems. However, the size of these deterministic266

equivalent is linear in the number of scenarios, which is often exponential in the horizon. For example, if we267

consider 10 possible realizations per stage, and T = 24, we have 1024 scenarios, rendering such approaches268

intractable.269

A solution consists in compressing the information required to take a decision. To this end we make a crucial270

stagewise independence assumption, and turn to Dynamic Programming tools, presented here. Those are271

exact methods, although they are not enough to tackle our industrial problem, and implementable heuristics272

derived from these ideas are presented in section 4.273

Recall that we can always go from (Pθ) to (P) by including θ in the state. Going forward, we then alleviate274

notational burden by dropping the θ in all notations.275

3.1 Stochastic Dynamic Programming276

Our goal is to have a stochastic approach to resolve our problem: we resort to Stochastic Dynamic Program-277

ming (SDP). Consider the problem (Pt) on sub-horizon [t : T ],278
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(Pt) Vt(xt−1) := min
(ut,xt)t∈[t:T ]

E
[ T∑
τ=t

Lτ (xτ−1, uτ , ξτ )

]
(8a)

s.t. xτ = Dτ (xτ−1,uτ , ξτ ) ∀τ ∈ [t : T ], (8b)

xτ ∈ Xτ ∀τ ∈ [t : T ], (8c)

uτ ∈ Uτ (xτ−1, ξτ ) ⊂ Uτ ∀τ ∈ [t : T ], (8d)

σ(uτ ) ⊂ σ(ξ1, . . . , ξτ ) ∀τ ∈ [t : T ]. (8e)

With the stage-wise independence assumption, the Dynamic Programming principle ensures that the value279

functions follow the following recursive equations:280

V̂t(x, ξ) = min
ut∈Ut(x,ξ)

Lt(x, ut, ξ)︸ ︷︷ ︸
instantaneous cost

+Vt+1(Dt(x, ut, ξ))︸ ︷︷ ︸
cost-to-go

, (9a)

Vt(x) = E
[
V̂t(x, ξt)

]
, (9b)

VT+1(x) = 0. (9c)

Solving Problem (Pθ) is equivalent to computing V1(x0). However, for any x ∈ XT−3, computing VT−2(x)281

requires full knowledge of VT−1. With continuous state, it is usually impossible. Indeed, for a given point282

x ∈ XT−2, we can compute the exact value VT−1(x) by solving |ΞT−1| deterministic problems defined in283

eq. (9a). We cannot however obtain the value of VT−1 for all x ∈ XT−2, as there are a non-finite number of284

them, unless we are in a very specific case where the solution can be obtained analytically (e.g., unconstrained285

linear-quadratic case). Thus, even computing exactly the value of VT−2 at a single point is not possible.286

Therefore, to accomodate for inexact value functions, we introduce the bellman operators which generalize287

eq. (9) so the dynamic equations hold for any given function R approximating the cost-to-go Vt+1.288

Backward operators

 B̂t(R) : x, ξ 7→ min
ut∈Ut(x,ξ)

Lt(x, ut, ξ) +R(Dt(x, ut, ξ)),

Bt(R) : x 7→ E
[
B̂t(R)(x, ξt)

]
.

(10a)

Forward operators

 u?t ∈ arg min
ut∈Ut(x,ξ)

Lt(x, ut, ξ) +R(Dt(x, ut, ξ)),

F̂t(R) : x, ξ 7→ Dt(x, u
?
t , ξ).

(10b)

The backward operator Bt, defined in eq. (10a), returns an approximation, at a given state x, of the cost-to-go289

Vt starting from time t, given an approximation of the cost-to-go starting from time t+ 1. Assume that we290

have an approximation Ṽt+1 of the cost-to-go from t+1. We can select a finite number of point {xkt−1}k∈K at291

which we compute, through the Bellman Operator, an approximation of Vt. To get an approximation on Xt−1,292

we need to interpolate these values. Thus, given a discretization of each state space Xt, and an interpolation293

method we can, recursively, compute an approximation of every cost-to-go function see algorithm 2.294

The forward operator, defined in eq. (10b), returns the optimal next state xt, given a starting state x, a295

noise ξ and an approximation of the cost-to-go from t + 1. Note that, in practice, computing B̂t(R)(x, ξ)296
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or F̂t(R)(x, ξ) consists in solving the same deterministic problem. Nevertheless, if the backward operator is297

well defined, the forward operator requires a choice if the optimal solution is not unique. To be completely298

rigorous, we should say that a forward operator defines a selection of the optimal solution set.299

Algorithm 2: Stochastic Dynamic Programming

1 Input : x0, discretization grids XDt , interpolation operator.

2 Output : approximated value function Ṽt
3 ṼT+1 = 0.
4 for t : T → 1 do
5 for xDt−1 ∈ XD

t−1 do
// We discretize Xt

6 for ξt ∈ Ξt do
7 Solve the one-stage deterministic optimization problem:

8 Ṽt(x
D
t−1, ξt) = B̂t(Ṽt+1)(xD

t−1, ξt).

9 Ṽt(x
D
t−1) =

∑
ξt∈Ξt

πξt Ṽt(x
D
t−1, ξt) ; // expected value

10 Define Ṽt for any x ∈ Xt−1 by interpolation on
{

(xDt−1, Ṽt(x
D
t−1))

}
xDt−1∈XD

t−1

.

300

Through the stagewise independence assumption, Dynamic Programming ensures that we can compress301

information, by looking for an optimal solution as a function of the current state instead of past noises. More302

precisely, the noise-based policy ψ[T ], defined in section 2.1, can be replaced by a sequence of functions π[T ],303

called state-based feedback, such that each function πt depends only on the current state and actual noise304

realization πt : Xt−1 × Ξt 7→ Ut. For any approximated cost-to-go functions, we have a state-based feedback ,305

see eq. (10b). Further, any scenario ξ[T ], yields a state trajectory:306

xt := F̂t(Ṽt)(xt−1, ξt) ∀t ∈ [T ], with x0 given. (11)

Remark 4 (Curse of dimensionality). Note that algorithm 2 solves O(T.|Xθ
t |.|Ξ|) deterministic, one-stage,307

problem. Thus, Dynamic Programming is a powerful tool as the multistage problem considers (|Ξ|T ) scenarios308

and turns the exponential complexity in the horizon T into a linear one.309

However, Dynamic Programming is limited by what is known as the curse of dimensionality. Indeed, we have310

to solve, for each time step, |Xθ
t |.|Ξ| problem. A discretization of Xt usually requires a number of points311

exponential in the dimension of Xt. Thus, in practice, Dynamic Programming cannot be used for state with312

more than 5 dimensions.313

Therefore, Dynamic Programming may be a solution for the operational problem presented in section 2.1, if314

the state is reasonable, but is unrealistic for the strategic problem of section 2.2. Indeed, recall that not only315

do we have all stocks xt, but also design parameter θ as state variables, and θ can naturally be of dimension316

24 for in-advance purchases.317
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3.2 Trajectory following dynamic programming algorithms318

To counteract the dynamic programming computational issues, a class of Trajectory Following Dynamic319

Programming (TFDP) algorithms (see [FL22] for a recent overview) has been developed. The crux of these320

algorithms is to iterate between forward phases that compute state trajectories, and backward phases that321

improve cost-to-go estimations.322

In stochastic dynamic programming (section 3.1), we do only one backward phase, on a given grid discretizing323

the state space. The approximate cost-to-go function Ṽt is defined outside of this grid through an interpolation324

operator. By contrast, TFDP algorithms automatically, and iteratively, generate the trial points at which325

we estimate the value function. Further, to extend the definition of Ṽ outside of the trial points, they326

leverage problem-specific properties (e.g., convexity, monotonicity, Lipschitz-continuity...) instead of generic327

interpolation operators.328

More specifically, in a forward phase of a TFDP algorithm, a state trajectory is computed using the current329

cost-to-go estimations (see eq. (11)). Then in a backward phase, the cost-to-go estimations are refined330

around the state trajectory computed in the forward phase. These approximations are generally given as331

maximum of elementary functions called cuts. The TFDP algorithms depends on different types of cuts332

with various assumptions. For example, the well-known Stochastic Dual Dynamic Programming (SDDP)333

algorithm [PP91] defines classical linear cuts (Bender’s cut), obtained through linear programming duality,334

assuming the problem is convex and continuous. In line with SDDP, the Stochastic Dual Dynamic Integer335

Programming (SDDiP), [ZAS19], assumes that all state variables are binary, that there exists some continuous336

recourse ensuring relatively complete recourse assumption, and derives specific linear cuts. As one can always337

represent bounded integer variables, and approximate continuous variables, through binaries, the algorithm338

is theoretically applicable for a large number of settings, including ours, but is limited in practice as each339

step requires solving a MILP, and as the convergence is generally slow. Another algorithm, the Mixed340

Integer Dynamic Approximation Scheme (MIDAS) (see [PWB20]) assumes monotonicity of the cost-to-go341

functions, and uses piecewise constant cuts to approximate them. Finally, the Stochastic Lipschitz Dynamic342

Programming (see [ACF22]), simply assumes Lipschitz regularity of the cost-to-go functions, and uses reverse343

norm cuts. SDDiP, MIDAS and SLDP might be applicable to the industrial microgrid setting, but are344

generally slow to converge without additional, problem-specific, cuts.345

We now present more precisely the SDDP algorithm, dedicated to convex continuous problem, and link it346

with the continuous relaxation of (P).347

3.3 Stochastic Dual Dynamic Programming (SDDP)348

For linear multistage stochastic problems with stagewise independence, the SDDP algorithm has proven to349

be an efficient tool, widely used in the energy community in particular for long term hydro-management. It350

is the most well known and studied example of TFDP algorithm, relying on Benders’ cut obtained through351

linear programming duality. In particular, it requires continuous variables.352

We therefore consider the continuous relaxation of (P), denoted (P r). It is the same problem as Problem (1)353

but we assume all binary variables are in [0, 1] instead of {0, 1}, represented by urt ∈ Urt (xt−1, ξt). Accord-354

ingly, we denote V rt the cost-to-go functions of (P r). They are linked through a Bellman backward operator355

Brt defined by eq. (10a), but minimizing variables urt over Urt instead of Ut.356

357
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Algorithm 3: Stochastic Dual Dynamic Programming

// Initialization

1 k = 0, V r,0t = LB.
2 for k : 0, . . . do
3 Simulate a scenario {ξkt }t∈[T ].

// Forward phase

4 xk0 = x0.
5 for t : 1→ T do

6 xkt = F̂rt (V r,kt )(xkt−1, ξ
k
t ).

// Backward phase

7 V r,kT+1 = 0

8 for t : T → 1 do
// Cut computation

9 for ξ realization of ξt do

10 Solve B̂rt (V
r,k
t+1)(xkt−1, ξ) and obtain coefficients α̂kt (ξ) and β̂kt (ξ) such that:

α̂kt (ξ)Tx+ β̂kt (ξ) ≤ B̂rt (V
r,k
t+1)(x, ξ) ∀x.

11 Define αkt = E
[
α̂kt (ξt)

]
and βkt = E

[
β̂kt (ξt)

]
.

12 Define V r,kt : x 7→ max
κ≤k

(ακt
Tx+ βκt ).

Leveraging the convexity of (P r), the SDDP algorithm 3, approximates each V rt+1 as a maximum of affine358

functions. More precisely, at iteration k, we first compute a trial trajectory (xkt )t∈[T ]. Then, in the back-359

ward phase, we can compute Brt (V rt+1)(xk+1
t−1 ) by solving |Ξt| linear problems. Linear programming duality360

yields a sub-gradient of Brt (V
r,k+1
t+1 ) at xk+1

t−1 , which in turn defines an affine function which under estimates361

Brt (V
r,k+1
t+1 ) ≤ Brt (V rt+1) = V rt . In particular, at iteration K, the approximate cost-to-go functions V r,Kt are362

given as a maximum of affine cuts, i.e.,363

V r,Kt : x 7→ min
x

γk (12a)

γk ≥ αt,k + βTt,kx ∀k ∈ [K]. (12b)

Recall that, given any approximated cost-to-go function, the forward Bellman operator (see section 3.1),364

produces a state-based feedback, satisfying in particular the binary constraints. Thus, it seems natural to365

use the functions V r,Kt as approximated cost-to-go, leading to a state-based feedback πSDDP
t . The main limit366

of this approach is that we are quite greedy in the way we repair the binary constraints. Indeed, V r,Kt does367

not account for binary constraints, and the forward operator only considers their impact on one time-step.368

We illustrate the limit of this approach on the following toy example.369

Example 1 (Limit of continuous relaxation.). Consider a production unit that produces two products j =370

A,B, over T = 2 time steps and one machine. The shared resource constraint, modeled through binary371
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variables bjt , implies that we must decide which product to produce at t = 1, and which at t = 2. We look372

for the production plan minimizing costs while satisfying a demand D = 1 in both products at the end of the373

horizon. The problem is formalized as follows.374

min 3uA1 + 2uB1 + (uA2 + uB2 ) (13a)

s.t uj1 + uj2 ≥ D j = A,B, (13b)

0 ≤ ujt ≤ 2bjt j = A,B t = 1, 2, (13c)

bAt + bBt ≤ 1 t = 1, 2, (13d)

bjt ∈ {0, 1}, u
j
t ≥ 0 j = A,B t = 1, 2. (13e)

For the true problem, it is optimal to produce B in the first period and A in the second period, resulting in375

an optimal cost of 3. However, in the continuous relaxation of Problem (13), bjt ∈ [0, 1], and producing both376

products at the same time is allowed. For instance, producing both product at time t = 2 (with bA2 = bB2 = 0.5)377

is admissible for the relaxed problem, yielding an optimal cost of 2.378

Let V r2 be the relaxed cost-to-go function given by:379

V r2 (uA1 , u
B
1 ) = min

uA2 ,u
B
2 ,b

A
2 ,b

B
2

uA2 + uB2 (14a)

s.t uj1 + uj2 ≥ D j = A,B, (14b)

0 ≤ uj2 ≤ 2bj2 j = A,B, (14c)

bA2 + bB2 ≤ 1, (14d)

bj2 ≥ 0, uj2 ≥ 0 j = A,B. (14e)

Now, using the cost-to-go approximation V r2 to determine optimal decisions of the mixed-integer problem at380

t = 1, we solve:381

min
uA1 ,u

B
1 ,b

A
1 ,b

B
1

3uA1 + 2uB1 + V r2 (uA1 , u
B
1 ) (15a)

s.t bA1 + bB1 ≤ 1, (15b)

0 ≤ uj1 ≤ 2bj1 j = A,B, (15c)

bj1 ∈ {0, 1} j = A,B. (15d)

Note that, when solving Problem15, we make decisions at t = 1 considering the cost impact at t = 2, but382

not knowing what decisions are attached to this cost. In dynamic programming, infeasibility is supposed to be383

propagated through costs: in this example, with the real cost-to-go function, V2(0, 0) = +∞ and the solution384

uA1 = uB1 = 0 would never be chosen. However, if we use the relaxed cost-to-go function, the infeasible solution385

uA1 = uB1 = 0 has a cost 0 + V r2 (0, 0) = 2 and is chosen rather than the optimal solution uA1 = 1;uB1 = 0,386

whose cost is 2 + V r2 (0, 1) = 3.387

We address this limit in section 4.4 through a look-ahead heuristic that consider more than one time-step.388
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4 Heuristics for multistage problems389

Let sum up. We have at hand: a stochastic algorithm with unreasonable computational time and a stochastic390

algorithm solving a continuous relaxation of our problem. Those are exact methods, but will not allow us391

to solve the problem in a satisfactory manner. Could we come up with heuristics taking into account392

uncertainties, using SDDP, and solving mixed-integer problems such as ours?393

4.1 The Expected Value (EV) heuristic394

One of the challenges is to take into account random variables. A common simplification consists in reducing395

the problem to its deterministic version, by replacing the random variable by our current best estimation.396

However, we are not in a complete recourse setting, meaning that the deterministic production and energy plan397

computed is not necessarily admissible. Therefore, a first heuristic consists in computing the deterministic398

solution fixing part of control variables, and then, adjusting the rest of the variables to actual random variable399

realization. In our particular microgrid problem, we fix production variables and then adjust energy flows to400

actual solar energy produced. We opt for a simple strategy described in fig. 2.401

Actual solar energy
available qPV

t

Is there more en-
ergy than needed?

Charge as much
energy as possible

yes

Stick to the
deterministic
battery plan.

no

We fix qgrid
t

to match en-
ergy needed.

Figure 2: Corrected EV heuristic algorithmic scheme

This strategy has no flexibility, which is needed in a system subjected to uncertainties. It serves as a402

benchmark for stochastic solution. Note that this heuristic consists in repairing the solution of the Expected403

Value problem detailed in section 2.3.404

4.2 Model Predictive Control405

To add flexibility to the previous approach, we present the Model Predictive Control (MPC) approach, as a406

first adaptive approach. To use MPC we need some forecast methodology, that takes available information407

to predict the values of the random variables
{
ξt
}
t∈[T ]

. The algorithm then consists in solving successive408

deterministic sub-problems (see algorithm 4). Step after step, it applies the decision of the first control409

obtained, reveals the realization of the next random variable, and recomputes all other decisions, updating410

forecasted values if possible.411

412

As long as we can get a solution to the MILPs in reasonable time, MPC is an easy option to implement.413

However, this method yields no performance guarantee, and does not really take randomness into account,414

as the solution is computed for a single possible realization, but simply recomputes the solution as more415

15



Algorithm 4: Model Predictive Control

1 Input : x0, initial forecast {ξ0
τ}τ∈[T ].

2 for t : 1→ T do
3 Update forecasted values {ξ0

τ}τ∈[T ].

u∗t , . . . , u
∗
T = arg min Lt(xt−1, ut, ξt) +

T∑
τ>t

Lτ (xτ−1, uτ , ξ
0
τ )

s.t. xτ = Dτ (xτ−1, uτ ) ∀τ ∈ [t : T ],

uτ ∈ Uτ (xτ−1, ξ
0
τ ) ∀τ ∈ [t : T ],

xτ ∈ Xτ ∀τ ∈ [t : T ].

xt := Dt(xt−1, u
∗
t )

information becomes available. Consequently, the quality of the solution provided by MPC depends mainly416

on the quality of the forecasted values, the flexibility of the problem and the sensitivity of the problem417

to uncertainty. To quantify this sensitivity we can use the Value of Stochastic Solution (VSS) defined in418

section 2.3.419

On a simple example, we show that MPC does not take into account the stochasticity of the problem, and420

can be largely suboptimal in case of asymmetry of the cost.421

Example 2. Consider a production unit with J = 1 product over T = 2 time steps with random demand d422

at t = 2. We assume d = 0 with probability 1
2 and d = 2 with probability 1

2 , then E[d] = 1. We obtain the423

following problem:424

min E[u1 + 10u2] (16a)

s.t u1 + u2 ≥ d, (16b)

u1,u2 ≥ 0, (16c)

σ(u2) ⊂ σ(d). (16d)

The MPC method returns solution u1 = 1, and then adapts u2 = 0 if d = 0 and u2 = 1 if d = 2, leading425

to an expected cost of V ψEV = 1
2 + 11

2 = 6. On the other hand, as the recourse cost is high, the two-stage426

approach chooses to produce enough for both scenario at stage 1, i.e., u1 = 2, leading to an expected cost427

V = 2.428

Thus, the stochastic solution is better than the MPC solution, which is emphasized by the Value of Stochastic429

solution V SS = V ψEV − V = 4. Further, the anticipative expected cost is V ψant = 0 + 2
2 = 1, so that the430

expected value of perfect information EV PI = V − V ψant is 1.431

4.3 2-stage stochastic programming432

The strategic design problem (P) balances the design cost I(θ) and the operational cost V (x0, θ). The433

2-stage stochastic programming consists in relaxing the non-anticipativity constraint for all operational de-434
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cisions, which amounts to approximating V (x0, θ) by V φant(x0, θ). Hence, the design problem becomes a435

two-stage stochastic program, where the first stage decision is the strategic decision θ and the recourse are436

the operational decisions, i.e.,437

min
θ∈Θ

I(θ) + E [V̂ ψant(x0, ξ[T ]; θ)] (17)

Recall that V̂ ψant(x0, ξ[T ]; θ) is the optimal value of the operational problem knowing the full scenario real-438

ization ξ[T ]. Thus, computing the exact value of V φant(x0, θ) = E [V̂ ψant(x0, ξ[T ]; θ)] would require to solve a439

deterministic operational problem for each possible scenario ξ[T ] ∈ Ω. There is usually far too many scenario440

to consider, thus, we resort to Sample Average Approximation, which is the 2-stage extension of Monte Carlo441

methods (see remark 3). We draw SMC scenarios, and approximate problem (17) as:442

V 2SMC (x0) := min
θ∈Θ

min
(xst ,u

s
t )s∈[SMC ],t∈[T ]

I(θ) +

SMC∑
s=1

1

SMC

[ T∑
t=1

Lθt (x
s
t−1, ut, ξ

s
t )

]
(18a)

s.t. xst = Dθ
t (x

s
t−1, u

s
t , ξ

s
t ) ∈ Xθ

t ∀t ∈ [T ], ∀s ∈ [SMC ], (18b)

ust ∈ Uθt (xst−1, ξ
s
t ) ⊂ Ut ∀t ∈ [T ], ∀s ∈ [SMC ]. (18c)

All the approaches presented in this section up to this point relax non-anticipativity constraints but keep443

binary constraints by solving MILPs. In section 3.3, we saw that SDDP solves problem (P) with non-444

anticipativity constraints but relaxing binary constraints. We now look for a trade-off between information445

relaxation and integrity relaxation.446

4.4 Look-ahead heuristic447

Were the forward operator (see eq. (10b)) to have more visibility on the future variable possibilities (or448

impossibilities), we have the intuition that the algorithm would perform better. Indeed, as it is defined, the449

operator takes the best decision possible at t by optimizing a one-stage problem minimizing the current cost450

at t plus an approximate cost-to-go function from t + 1. Details of the problem complexity are thus only451

represented over one stage, and the impact of decision at time t on the next stage should all be taken into452

account by the approximate cost-to-go function.453

To have a better representation of the problem, we can consider τ -stage problems with a final cost-to-go454

function Ṽt+τ instead of one-stage problems (with final cost-to-go function Ṽt+1). More precisely we define a455

τ -look-ahead Bellman operator Bτt as:456
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B̂τt (R) : x, ξ 7→ min
u∈ Ut(x,ξ)

Lt(x, u, ξ)+ min
(xt′ ,ut′ )t′∈[t+1:t+τ]

E
[ t+τ∑
t′=t+1

Lt′(xt′−1,ut′ , ξt′) +R(xt+τ )

]
(19a)

s.t. xt = Dt(x, u, ξ), (19b)

xt′ = Dt′(xt′−1,ut′ , ξt′) t′ ∈ [t+ 1 : t+ τ ], (19c)

ut′ ∈ Ut′(xt′−1, ξt′) t′ ∈ [t+ 1 : t+ τ ], (19d)

σ(ut′) ⊂ σ(ξ[t+1:t′]) t′ ∈ [t+ 1 : t+ τ ]. (19e)

Bτt (R) : x 7→ E
[
B̂τt (R)(x, ξ)

]
(19f)

In this setting, the first-stage decisions are optimized knowing the impact they have on the next τ −1 stages,457

thanks to eqs. (19b) to (19e), and a cost-to-go function R from t+ τ + 1. However, the τ−stage decisions are458

taken without any visibility on the future except a given cost-to-go function. For this reason, when solving459

each τ−stage problem Bτt (Rt+τ+1)(xt−1), we only store the first-stage variables ut and then move along to460

the next sub-problem Bτt+1(Rt+τ+2)(xt).461

In a sense, we allow the operators to look ahead of time to choose their decision at t, and call this method the462

look-ahead heuristic. We associate to the backward operator B̂τt a forward operator F̂τt (R) : Xt−1×Ξt → Xt463

which returns x?t = Dt(x, u, ξ) where u?t is an optimal value from the first min in (19a).464

For clarity, we explicitly give the 2-look-ahead Bellman operator:465

B̂2
t (R)(x, ξt) = min

xt,(xst+1)s∈|Ξt+1|
ut,(u

s
t+1

)s∈|Ξt+1|

Lt(x, ut, ξt) +
∑
s

P(ξt+1 = ξst+1)
[
Lt+1(xt, u

s
t+1, ξ

s
t+1) +R(xst+1)

]
(20a)

s.t. xt = Dt(x, ut, ξt),

xst+1 = Dt+1(xt, u
s
t+1, ξ

s
t+1) ∀s ∈ |Ξt+1|,

B2
t (R)(x) = E

[
B̂2
t (R)(x, ξt)

]
. (20b)

Note that this 2-look-ahead Bellman operator considers the exact cost at t and t + 1, and uses R as an466

estimation of expected cost-to-go from t + 2 to T . In particular, due to the new information, we must467

consider as many decisions ust+1 as there are realizations for random variable ξt+1.468

Combining these new operators with the approximated cost-to-go functions computed by SDDP (see sec-469

tion 3.3), we get a heuristic where the non-anticipativity constraints hold at any time, and the integrity470

constraints are kept on τ time steps. Unfortunately, increasing the look-ahead horizon i.e., τ , greatly in-471

creases the complexity of the sub-problems we solve. For instance, with |Ωt| = 10, the backward operator B̂τt472

at t solves a problem with 10τ−1 times more variables than B̂t.473

5 Numerical results474

We now present a study case from our industrial partner on which we evaluate the numerical methods475

presented above. In section 5.1 we detail the study case, intraday results, given in section 5.2, show that the476
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MPC method is most adapted to our study, it is then used for the day-ahead problem in section 5.3 where477

SDDP shows its advantages.478

5.1 Study case479

The problem (Pθ) introduced in section 1 and formalized in section 2.1 is motivated by a cement factory in480

South Korea. We solve the problem for an hourly planning on one day, with T = 24 time steps.481

In the Republic of Korea, electricity rates are fixed for the industry and depend on different time slots and482

the season. We took the rates given by the Korea Electricity Power Corporation website [Newa] and thus483

obtain {pID
t }t∈[T ]. We consider that buying energy in advance is cheaper and fix the day-ahead rates to 90%484

of the real-time rates.485

Then we collect data for solar generation on [Newb]. Each dataset provides a year of hourly data on horizontal486

radiations It. Then the available solar energy is given as qPV
t = ηPVAcell ncell C It where ηPV = 0.16 is the487

solar panel efficiency factor, Acell = 0.0232m2 is the surface area of a cell, ncell = 72 is the number of cells488

per panel, npanel is the number of solar panels, C = 1
3600 is the conversion factor (here MJ to MWh) and It489

in W.m−2 is the horizontal solar radiation.490

From this data, we use a forecast algorithm to predict a daily solar energy generation: the model is trained on491

the last 72 hours data to produce generation scenario over the next 24 hours. From this model we estimate,492

at each time step t, 9 quantiles. We finally assume that the noise is stagewise independent, leading to 9T493

scenarios.494

The factory owns I = 3 mills and produces J = 3 different cements (F32, F40, CPV). We consider binary495

variables, (bijt )t,i,j , deciding which cement we produce on which mill at each given time and continuous496

positive variables, (uijt )t,i,j , representing the quantity of cement produced.497

∑
j

bijt ≤ 1 ∀i, t, (21a)

max
i
bi1t + max

i
bi3t ≤ 1 ∀t, (21b)

uimint bijt ≤ u
ij
t ≤ uimaxt bijt ∀i, j, t, (21c)

qload
t =

∑
i,j

αi,juijt + βi,jbijt ∀t, (21d)

bijt ∈ {0, 1} ∀i, j, t. (21e)

One mill can produce only one cement at a time (21a), and two of them (F40 and CPV) sharing resources,498

cannot be produced simultaneously (21b). Bounds are given by the industrial on the production of each499

cement for each mill (21c). An analysis on the factory’s data leads us to model a mill’s energy consumption,500

on the range [uimint , uimaxt ], as an affine function of its cement production (21d).501

The factory owns solar panels and a battery. Thus the energy supply is a mix of solar energy available qPV
t ,502

of charge φ+
t and discharge φ−

t from the battery, and of energy bought from the main grid qgrid
t . With these503

elements, we need to ensure that the energy supply exceeds the energy demand qload
t , leading to the following504

control constraints (representing eq. (1d)).505
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qPV
t + φ−

t − φ
+
t + qgrid

t ≥ qload
t ∀t, (21f)

0 ≤ φ+
t ≤

SOCmax
4

∀t, (21g)

0 ≤ φ−
t ≤

SOCmax
4

∀t, (21h)

0 ≤ qgrid
t . (21i)

Hence, the state of the system is described by the cements and battery stocks. The stocks of cement are506

modeled with state variables (sjt )t,j . The demand at time t is modeled as a deterministic vector (djt )j∈J ,507

estimated from factory production data. Initial stocks are empty. Then the stock variables follow dynamic508

equations and bounding constraints given by509

sjt = sjt−1 − d
j
t +

∑
i

uijt ∀t, j, (21j)

sjt ≥ 0 ∀t, j, (21k)

sj0 = 0. (21l)

Indeed, for each time t and product j, the factory has to satisfy a demand djt , which is ensured by the positivity510

of stocks requirement (see eq. (21k)). Further, the quantity of energy stored in the battery, (SOCt)t, is also511

modeled as a state variable:512

SOCt = SOCt−1 −
1

ρ
φ−
t + ρφ+

t ∀t, (21m)

SOCmin ≤ SOCt ≤ SOCmax ∀t. (21n)

The battery size is proportional to the installed renewable capacity. We study three cases, where SOCmax513

is equal to the quantity of energy the solar panels can produce in 0.5, 3 or 6 hours. We also fix φ+
max and514

φ−max to a quarter of the battery’s capacity per time-step and the efficiency factor ρ to 0.9. Note that the515

dynamics in eq. (1b) are here represented by eqs. (21j) and (21m), and the state constraints with eqs. (21k)516

and (21n).517

In section 2.2 we describe a strategic problem where a parameter θ design the operational problem (Pθ).518

Here we consider that energy can be either bought in advance (e.g., on a day-ahead market), or in real519

time through industrial contract with fixed price. Therefore, we have strategic continuous positive variables520

θ = {vDA
t }t∈[T ] which model the energy bought in advance to the main grid at price pDA

t .521

We can decompose the energy bought from the grid {qgrid
t }t∈[T ] (see eq. (22a)) into energy bought in advance522

{vDA
t }t∈[T ] plus energy bought during the day, represented by continuous positive variables {vID

t }t∈[T ].523

qgrid
t = vDA

t + vID
t ∀t ∈ [T ], (22a)

vDA
t ,vID

t ≥ 0 ∀t ∈ [T ]. (22b)
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524

The production and energy plan thus aim to minimize the following stochastic optimization problem:525

min
∑
t

pDA
t vDA

t︸ ︷︷ ︸
I(θ)

+E
[∑

t

pID
t v

ID
t

]
(23a)

s.t. eqs. (21) and (22), (23b)

σ(bt, ut, q
grid
t , φ+

t , φ
−
t ) ⊂ σ(ξ[t]) ∀t ∈ [T ]. (23c)

526

5.2 Intraday results527

In this section we present and analyze the results obtained when solving problem (23) on instances in which528

energy can only be bought in real time, which is equivalent to fixing θ := 0 i.e., vDA
t = 0 for all t. Further,529

we only consider a demand at the end of the day: djt > 0 only for t = T .530

On a given day, for various renewable size (npanel ∈ {100, 200, 400, 600}) and battery sizing (SOCmax repre-531

sents 0.5, 3 or 6 hours of maximum renewable production), we test the different strategies, evaluating them532

over 500 common scenarios drawn from our statistical model. More precisely, we compare:533

1. the elementary strategy, described in section 4.1, which solves the EV problem then adapt energy534

variables following a deterministic procedure as noises are revealed;535

2. the MPC strategy, see section 4.2, which consists in solving deterministic sub-problems at each stage,536

with updated information, to adjust the solution trajectory accordingly;537

3. and the Look-Ahead (LA), with τ = 2, explained in section 4.4, strategy which computes a solution538

with dynamic programming using an under-approximation of future costs given by SDDP.539

To evaluate a strategy’s performance over a given scenario, we define the anticipative regret of admissible540

noise-based policy π, on a scenario ξ[T ], as the relative gap between its cost and the anticipative lower bound:541

ARπ(ξ[T ]) =
V̂ π(x0, ξ[T ]; θ)− V̂ πant(x0, ξ[T ]; θ)

|V̂ πant(x0, ξ[T ]; θ)|
. (24)

In fig. 3 we report the anticipative regret of each strategy. The results clearly show MPC’s superiority on these542

instances. On the one side, the EV heuristic yields unsatisfactory results in comparison to MPC: its expected543

anticipative regret is always higher, and its expected cost as well. Further, except on the first column, which544

corresponds to instances with few uncertainties (i.e., a solar factor of 0.5), and the first instance of the545

second column (a more uncertain instance but with a small battery), the EV heuristic performs worse than546

the look-ahead heuristic. As uncertainties grow (from left to right), the costs of the EV heuristic are farther547

and farther away from the anticipative lower bound, showing that a purely deterministic procedure is not548

relevant for our problem.549
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Figure 3: Anticipative regret (AR) in percentage for different solar park capacity and ESS capacity: increasing
solar energy (and thus variability) from left to right, and increasing battery storage capacity (proportional
to solar energy available) from top to bottom.

On the other side, the look-ahead heuristic, properly taking uncertainties into account with a stochastic550

procedure, but relaxing some integrity constraint, does not perform as well as MPC. Indeed, the latter,551

adjusting the solution trajectory to uncertainties, yields solutions close to their anticipative lower bound:552

even for the most volatile instances (i.e., the ones with a solar factor or 3, all on fig. 3’s fourth column), the553

anticipative regret is lower than 5% and in most cases insignificant. These performances can be explained554

by the problem structure: the uncertainty source does not impact significantly future costs, in case of solar555

energy variations at t, MPC foresees the cost impact and adapts accordingly. Furthermore, for industrial556

problems with renewable generation, we confirm the necessity of installing an ESS to make the system flexible.557

In fig. 4, we plot the optimal expected cost of the various methods on instances with growing ESS capacity.558

Clearly, the expected optimal expected cost decreases as the ESS capacity increases, although the marginal559

impact of the ESS capacity is decreasing.560

Whereas MPC results are better, we call attention to its limits: on table 1 we can see that MPC takes longer561
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Figure 4: Expected value of strategies with 95% confidence interval.

in computation time than the look-ahead heuristic, even more so on instances with the most variability. On562

these instances, it remains reasonable (a few seconds per problem at the most for an hour step time problem),563

but with larger instances, more constraints, it could be unsuitable. Note that SDDP converges after only a564

100 iterations, taking approximately 250s per instance.565

5.3 Day-ahead results566

We now consider the full problem 23 with strategic and operational decisions. In particular, we consider an567

initial time step (t = 0), where the industrial buys in advance energy quantities for the whole horizon. To568

our knowledge, this type of contract does not exist yet in South Korea, but they could be interesting for the569

regulator to encourage certain consumption scheme. It can also model the access to energy markets for large570

consumers or consumers aggregated through virtual power plants. We fix the in advance prices at 90% of571

intra-day prices.572

The problem (P), see eq. (4), can be decomposed in two parts: first a strategical problem with variable θ,573

here day-ahead energy purchases, and constraints θ ∈ Θ; then an operational sub-problem (Pθ), see eq. (1),574

parametrized by θ. Our intuition is that a deterministic method might not be flexible enough because first575

stage decisions impact the whole horizon. Note that the parametrized problem (Pθ) corresponds to the576

intraday problem we solve in section 5.2. Here we saw that the most efficient method to solve (Pθ) is MPC,577

in this section we determine through different methods the best strategical decision θ? and then run MPC578

on the problem (Pθ?).579
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SOCmax 0.5h 3h 6h
npanel MPC L-A SDDP MPC L-A SDDP MPC L-A SDDP

100 21 6.5 277 12 7.6 268 25 20 262
200 26 8.0 213 4.4 2.9 225 38 18 238
400 254 11 249 136 26 234 193 24 260
600 248 10 266 125 22 250 135 23 261

Table 1: Expected computation time (in seconds) for different solar park capacity and ESS capacity.

We assume that the demand is only positive at the end of the day djT > 0 and we test various renewable580

size (npanel ∈ {100, 200, 400, 600}). In section 5.2, we tested different battery size, and results showed that581

extending the battery capacity, to a certain point, improves costs and the system flexibility. Consequently,582

we now fix the battery capacity to 3 hours of maximum renewable production.583

To optimize θ, we test 3 methods evaluated over 1000 common scenarios:584

1. the Expected Value strategy, see section 2.3, which solves a deterministic (P ) replacing random vari-585

ables by their expected value;586

2. the 2−stage strategy, detailed in section 4.3, which takes the decision θ minimizing the expected cost587

over SMC = 10 scenarios (ξs[T ])s∈[SMC ]. As SMC is small, compared to the noise space, for computational588

reasons, we consider the median scenario with probability 1
2 ;589

3. the SDDP strategy in section 3.3 solves (P r), the continuous relaxation of the problem, and yields a590

solution taking into consideration the uncertainties on the whole horizon, but relaxing integrity.591

OPT AR (in %)
npanel EV 2stage SDDP EV 2stage SDDP

100 6067 6023 6038 1.6 0.9 1.1
200 5471 5483 5451 2.1 2.3 1.7
400 4552 4553 4481 4.2 4.2 2.5
600 3714 3691 3641 8.7 7.9 6.7

Table 2: Expected Cost (Opt) and Anticipative Regret (AR) of the solution obtained when finding θ with
the different methods (EV, 2−stage, SDDP); parametrizing the operational problem with this θ; then solving
the parametrized operational problem with MPC.

EV 2stage SDDP
npanel I(θEV ) V (x0; θEV ) Opt I(θ2S) V (x0; θ2S) Opt I(θr) V (x0; θr) Opt

100 6002 65 6067 5830 193 6023 5659 379 6038
200 5369 102 5471 5123 360 5483 5102 349 5451
400 4357 195 4552 4073 480 4553 4043 438 4481
600 3394 320 3714 2965 726 3691 3094 548 3642

Table 3: We obtain θEV , θ2S , θr by solving the problem respectively with the EV strategy, 2−stage program-
ming and SDDP; then we parametrize and solve the operational problem with MPC for each θ.
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From table 2, reporting simulated cost and anticipative regret of the various heuristics, we observe that,592

except for the instance with less uncertainties (first line), the day-ahead energy purchases determined with593

SDDP yield a lower expected cost as well as a lower anticipative regret than those determined with 2−stage594

programming or the EV strategy. As uncertainties grow (from top to bottom on the table), the anticipative595

regret increases and the gap between the AR of EV and the one of SDDP gets wider. Indeed, in the instance596

with a solar factor equal to 1, the anticipative regret is 0.4% lower for SDDP whereas it is 2% lower for the597

instance with more uncertainties (factor equal to 3).598

On table 3 we separate design costs I(θ) from operational costs V (x0; θ) for all instances solved. Whereas599

the EV strategy essentially pays energy in advance, the two-stage and SDDP strategies have lower design600

costs and buy more energy in real time. This can be explained because a stochastic approach is looking for a601

trade-off between initial and recourse decisions. Assume that we have more energy than predicted, this extra602

energy comes for free and we better not have bought too much energy in advance, forcing us to throw this603

extra energy away (we can’t charge the battery more than what is allowed). On the contrary, if we have less604

energy than predicted, we must either adapt the production plan (which might be possible) or buy energy in605

real time which is not that much more expensive than if we bought it in advance (110% of day-ahead prices).606

Thus, we understand that in this problem, it is more efficient to underestimate the quantity of energy to buy607

from the main grid, as we have more to gain if the solar realization exceeds its prediction than we have to608

lose in the opposite case.609
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